Carbon monoxide and Ca2+-activated K+ channels in cerebral arteriolar responses to glutamate and hypoxia in newborn pigs.

نویسندگان

  • Alie Kanu
  • Charles W Leffler
چکیده

Large-conductance calcium-activated potassium (K(Ca)) channels regulate the physiological functions of many tissues, including cerebrovascular smooth muscle. l-Glutamic acid (glutamate) is the principal excitatory neurotransmitter in the central nervous system, and oxygen tension is a dominant local regulator of vascular tone. In vivo, glutamate and hypoxia dilate newborn pig cerebral arterioles, and both dilations are blocked by inhibition of carbon monoxide (CO) production. CO dilates cerebral arterioles by activating K(Ca) channels. Therefore, the present study was designed to investigate the effects of glutamate and hypoxia on cerebral CO production and the role of K(Ca) channels in the cerebral arteriolar dilations to glutamate and hypoxia. In the presence of iberiotoxin or paxilline that block dilation to the K(Ca) channel opener, NS-1619, neither CO nor glutamate dilated pial arterioles. Conversely, neither paxilline nor iberiotoxin inhibited dilation to acute severe or moderate prolonged hypoxia. Both glutamate and hypoxia increased cerebrospinal fluid (CSF) CO concentration. Iberiotoxin that blocked dilation to glutamate did not attenuate the increase in CSF CO. The guanylyl cyclase inhibitor, 1H-(1,2,4)oxadiazolo(4,3-a)quinoxalin-1-one (ODQ), which blocked dilation to sodium nitroprusside, did not inhibit dilation to hypoxia. These data suggest that dilation of newborn pig pial arterioles to glutamate is mediated by activation of K(Ca) channels, consistent with the intermediary signal being CO. Surprisingly, although 1) heme oxygenase (HO) inhibition attenuates dilation to hypoxia, 2) hypoxia increases CSF CO concentration, and 3) K(Ca) channel antagonists block dilation to CO, neither K(Ca) channel blockers nor ODQ altered dilation to hypoxia, suggesting the contribution of the HO/CO system to hypoxia-induced dilation is not by stimulating vascular smooth muscle K(Ca) channels or guanylyl cyclase.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Carbon monoxide and cerebral microvascular tone in newborn pigs.

The present study addresses the hypothesis that CO produced from endogenous heme oxygenase (HO) can dilate newborn cerebral arterioles. HO-2 protein was highly expressed in large and small blood vessels, as well as parenchyma, of newborn pig cerebrum. Topically applied CO dose-dependently dilated piglet pial arterioles in vivo over the range 10-11-10-9M (maximal response). CO-induced cerebrovas...

متن کامل

Astrocyte-derived CO is a diffusible messenger that mediates glutamate-induced cerebral arteriolar dilation by activating smooth muscle Cell KCa channels.

Astrocyte signals can modulate arteriolar tone, contributing to regulation of cerebral blood flow, but specific intercellular communication mechanisms are unclear. Here we used isolated cerebral arteriole myocytes, astrocytes, and brain slices to investigate whether carbon monoxide (CO) generated by the enzyme heme oxygenase (HO) acts as an astrocyte-to-myocyte gasotransmitter in the brain. Glu...

متن کامل

AHEART May 45/5

Leffler, Charles W., Alberto Nasjletti, Changhua Yu, Robert A. Johnson, Alexander L. Fedinec, and Nicole Walker. Carbon monoxide and cerebral microvascular tone in newborn pigs. Am. J. Physiol. 276 (Heart Circ. Physiol. 45): H1641–H1646, 1999.—The present study addresses the hypothesis that CO produced from endogenous heme oxygenase (HO) can dilate newborn cerebral arterioles. HO-2 protein was ...

متن کامل

Carbon monoxide mediates vasodilator effects of glutamate in isolated pressurized cerebral arterioles of newborn pigs.

The excitatory neurotransmitter glutamate causes dilation of newborn pig cerebral arterioles in vivo that is blocked by inhibition of carbon monoxide (CO) production. CO, a potent dilator in cerebral circulation in vivo, is produced endogenously in cerebral microvessels via heme oxygenase (HO). In isolated pressurized cerebral arterioles (approximately 200 microm) from newborn pigs, we investig...

متن کامل

Time-dependent action of carbon monoxide on the newborn cerebrovascular circulation.

Carbon monoxide (CO) causes cerebral arteriolar dilation in newborn pigs by the activation of large-conductance Ca(2+)-activated K(+) channels. In adult rat cerebral and skeletal muscle arterioles, CO has been reported to produce constriction caused by the inhibition of nitric oxide (NO) synthase (NOS). We hypothesized that, in contrast to dilation to acute CO, more prolonged exposure of newbor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 293 5  شماره 

صفحات  -

تاریخ انتشار 2007